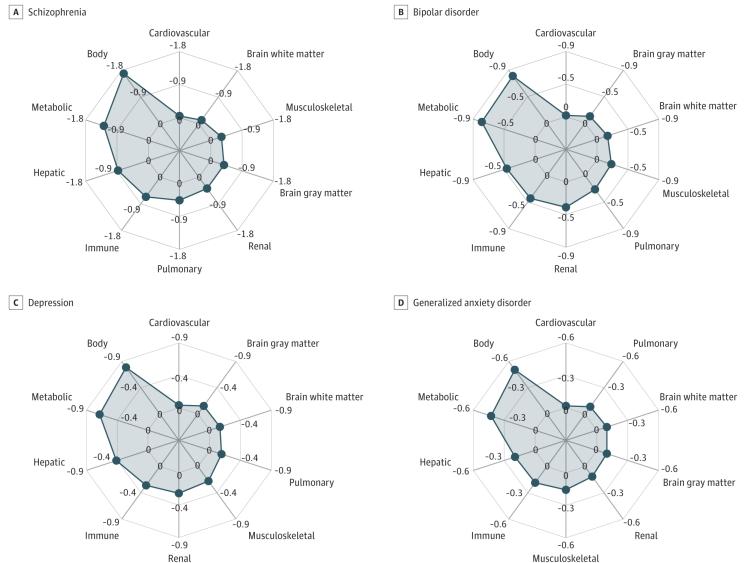
GLP1-RAs in Severe Mental Illness – Opportunities and Challenges

Mahavir Agarwal, MBBS, MD, PhD Clinician-Scientist and Medical Head, Clinical Research Schizophrenia Division, Centre for Addiction and Mental Health Associate Professor, Department of Psychiatry, University of Toronto


Disclosures

- HLS therapeutics
- Boehringer Ingelheim, Canada

Objectives

- 1. To review unmet needs in severe mental illness: metabolic and cognitive dysfunction
- 2. To review the opportunities and challenges presented by GLP-1RAs

Brain and body health scores in mental illness

Tian et al., JAMA Psychiatry 2023

Implications beyond cardiovascular morbidity & mortality

Metabolic abnormalities and cognition in schizophrenia

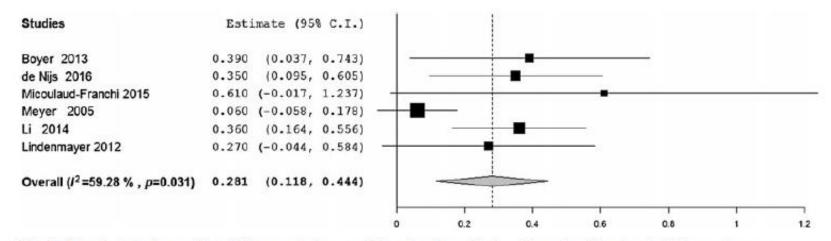
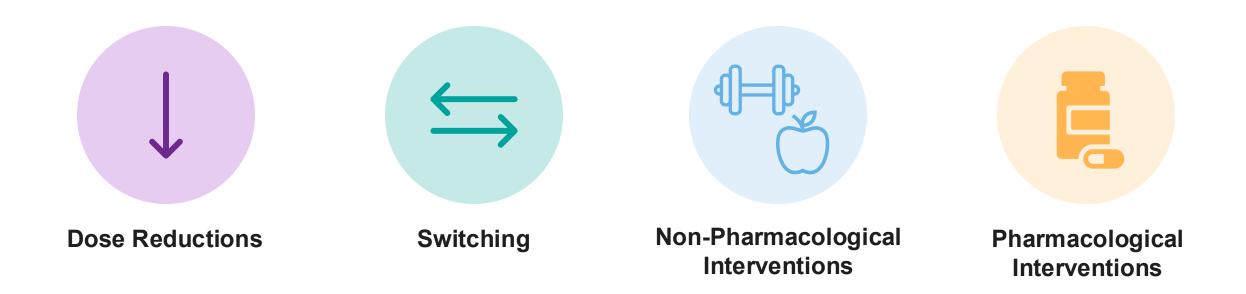


Fig. 2. Forest plot of cognitive differences between schizophrenia patients with and without metabolic syndrome.

Fig. 3. Forest plot of cognitive differences between schizophrenia patients with and without diabetes mellitus.

Bora et al., Psychological Medicine 2017


Metabolic abnormalities and cognition in mood disorders

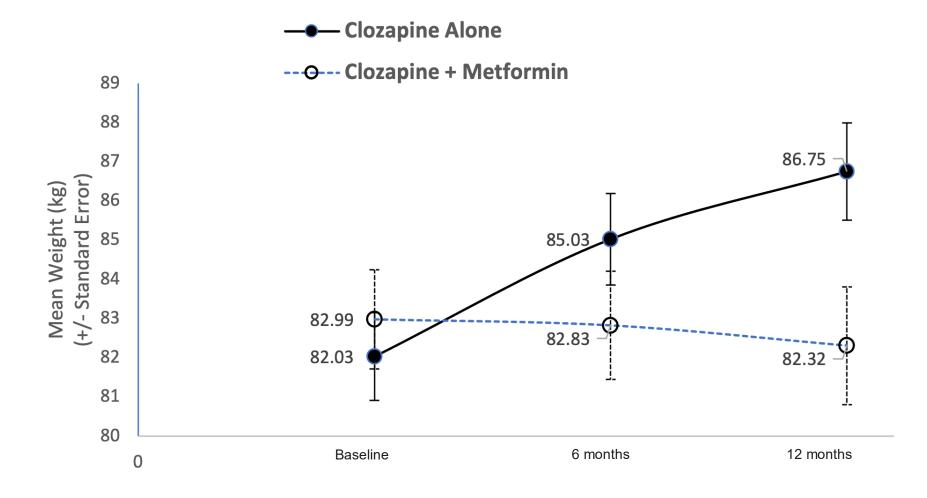
Study or Subgroup	Std. Mean Difference	SE		Std. Mean Difference IV, Random, 95% CI	Std. Mean Difference IV, Random, 95% Cl
1.1.1 Bipolar Disorder					
Bai 2016	-0.6	0.1888	2.7%	-0.60 [-0.97, -0.23]	
Chang 2022	-0.09	0.2398	2.2%	-0.09 [-0.56, 0.38]	
Dalkner 2021 (MetS)		0.0816	4.0%	-0.09 [-0.25, 0.07]	-
Depp 2014 (BMI 25-29.9)		0.1327	3.4%	-0.16 [-0.42, 0.10]	
Depp 2014 (BMI 30+)		0.1327	3.4%	-0.44 [-0.70, -0.18]	-
Hubenak 2015 (MetS)		0.3418	1.4%	-0.87 [-1.54, -0.20]	
Mora 2017		0.0714	4.1%	-0.58 [-0.72, -0.44]	-
Ringin 2022		0.0816	4.0%	-0.17 [-0.33, -0.01]	-
Salvi 2020		0.1071	3.7%	-0.45 [-0.66, -0.24]	-
Silveira 2014		0.102	3.8%	-0.05 [-0.25, 0.15]	+
Tsai 2007		0.2143	2.4%	-0.54 [-0.96, -0.12]	
Yim 2012		0.0867	3.9%	-0.22 [-0.39, -0.05]	-
Subtotal (95% CI)	0.22	0.0007		-0.32 [-0.45, -0.18]	
Heterogeneity: Tau ² = 0.04; Chi ² = 42.91, df = 11 (P < Test for overall effect: Z = 4.64 (P < 0.00001)	0.0001); I ² = 74%				
1.1.2 Major Depressive Disorder					
Fourrier 2020 (BMI 25–29.9)	-0.65	0.0918	3.9%	-0.65 [-0.83, -0.47]	-
Fourrier 2020 (BMI 30–34.9)	-0.42	0.1173	3.6%	-0.42 [-0.65, -0.19]	-
Fourrier 2020 (BMI≥35)	-0.47	0.1173	3.6%	-0.47 [-0.70, -0.24]	-
Geraets 2022	-0.49	0.0714	4.1%	-0.49 [-0.63, -0.35]	-
Guan 2021 (Females)	-0.8	0.2041	2.5%	-0.80 [-1.20, -0.40]	
Guan 2021 (Males)	0.03	0.2245	2.3%	0.03 [-0.41, 0.47]	
Hidese 2018 (25≤BMI<30)	-0.08	0.0969	3.8%	-0.08 [-0.27, 0.11]	
Hidese 2018 (BMI≥30)		0.199	2.6%	-0.51 [-0.90, -0.12]	
Kloiber 2006		0.1071	3.7%	-0.03 [-0.24, 0.18]	+
Lan 2022		0.1888	2.7%	-0.29 [-0.66, 0.08]	
Marijnissen 2017		0.1173	3.6%	0.04 [-0.19, 0.27]	+
Zhang 2021		0.1173	3.6%	-0.60 [-0.83, -0.37]	-
Subtotal (95% CI)				-0.36 [-0.51, -0.20]	◆
Heterogeneity: Tau ² = 0.06; Chi ² = 56.41, df = 11 (P < Test for overall effect: Z = 4.45 (P < 0.00001)	0.00001); I ² = 81%				
1.1.3 Depressive Symptoms/ Self-Reported Depression			rs		
Borhaninejad 2022	-0.32		2.1%	-0.32 [-0.81, 0.17]	
Downer 2016		0.0867	3.9%	-0.12 [-0.29, 0.05]	-
Ferri 2021		0.0561	4.2%	-0.05 [-0.16, 0.06]	*
Janocha 2010 (Moderate Depressive Episodes)		0.2908	1.8%	-1.26 [-1.83, -0.69]	
Janocha 2010 (Recurrrent Depressive Episodes; MDD)		0.6837	0.5%	-3.46 [-4.80, -2.12]	
Kontari 2019	-0.23	0.0816	4.0%	-0.23 [-0.39, -0.07]	-
Ng 2009 (Females)	-0.21	0.2041	2.5%	-0.21 [-0.61, 0.19]	-+
Ng 2009 (Males) Subtotal (95% CI)	-0.67	0.2704	1.9% 20.9%	-0.67 [-1.20, -0.14] - 0.42 [-0.68, -0.17]	•
Heterogeneity: Tau ² = 0.09; Chi ² = 46.42, df = 7 (P < 0 Test for overall effect: Z = 3.32 (P = 0.0009)	.00001); I ² = 85%				
Total (95% CI)			100.0%	-0.35 [-0.44, -0.25]	•
Heterogeneity: Tau ² = 0.05; Chi ² = 162.17, df = 31 (P Test for overall effect: Z = 7.03 (P < 0.00001) Test for subgroup differences: Chi ² = 0.59, df = 2 (P =					-4 -2 0 2 4 + Cognitive Impairment - Cognitive Impairment

Objectives

- 1. To review unmet needs in severe mental illness: metabolic and cognitive dysfunction
- 2. To review the opportunities and challenges presented by GLP-1RAs

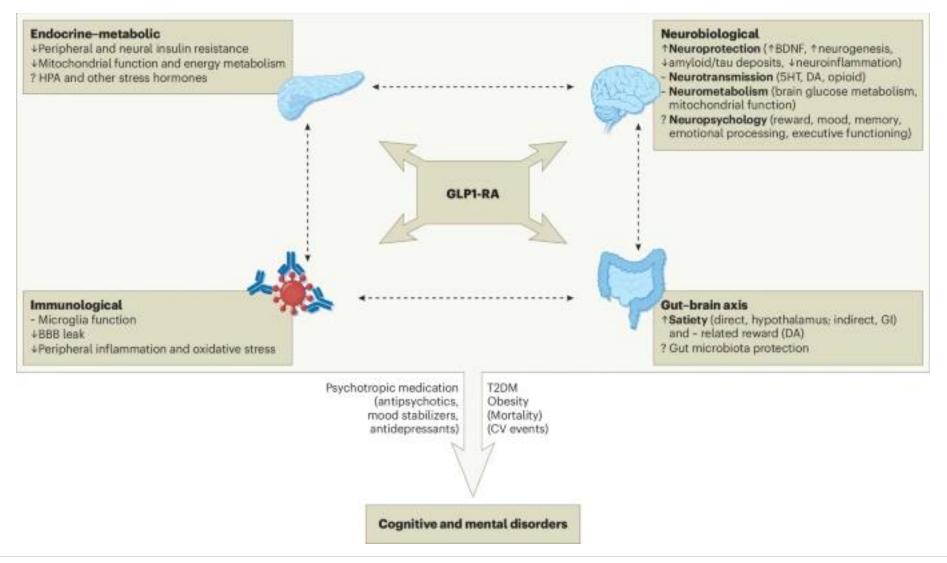
Treating metabolic problems in psychiatric disorders

Pharmacological interventions for metabolic problems


Metformin for **prevention** of weight gain in SMI

	Met	formin		Pla	acebo			Mean Difference	1	Mean Diff	erence	
Study or Subgroup	Mean [kg]	SD [kg]	Total	Mean [kg]	SD [kg]	Total	Weight	IV, Random, 95% CI [kg]	IV, R	andom, 9	5% CI [kg]	
Arman 2008a	36.03	12.81	16	32.03	22.45	16	1.9%	4.00 [-8.67, 16.67]				
Baptista 2006	63.8	10.2	19	65.6	8.5	18	8.4%	-1.80 [-7.84, 4.24]	32	•		
Rado 2016a	2.54	2.35	12	5.88	5.23	13	31.0%	-3.34 [-6.48, -0.20]	-	-		
Wu 2008a	1.9	2.72	18	6.87	4.23	19	58.7%	-4.97 [-7.25, -2.69]	-	-		
Total (95% CI)			65			66	100.0%	-4.03 [-5.78, -2.28]	•			
Heterogeneity: Tau ² = Test for overall effect			- 100 A	² = 0.41); /²	= 0%				-10 -5 Favours me	tformin F	avours plac	10 ebo

Agarwal et al., Cochrane Database of Systematic Reviews 2022; Agarwal et al., Schizophrenia Bulletin 2023

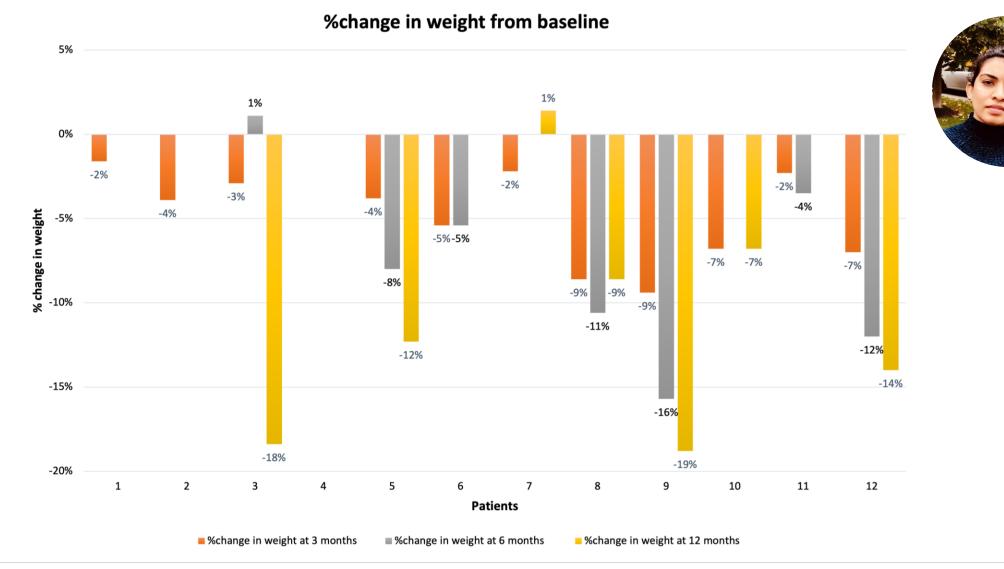

Stogios et al., Acta Psychiatrica Scandinavica 2022

Treating metabolic problems in psychiatric disorders

Metformin for treatment of weight gain in SMI

1.1.1 First episode psychosis (FEP) Wang 2012 61.9 6 32 66.9 5.1 34 10.6% -5.00 [-7.69, -2.31] Wu 2008b 61.9 2.4963 32 67.2 2.4963 32 17.6% -5.30 [-6.52, -4.08] Wu 2012 54.23 7.46 42 58.95 5.79 42 9.9% -4.72 [-7.58, -1.86] Subtotal (95% CI) 106 108 38.1% -5.18 [-6.22, -4.14] - Heterogeneity. Tau ² = 0.00; Chi ² = 0.15, df = 2 (P = 0.93); l ² = 0% 108 38.1% -5.18 [-6.22, -4.14] Baptista 2007a 64.8 14.6 36 65.4 17.7 36 2.4% -0.60 [-8.10, 6.90] Baptista 2007a 64.8 14.6 36 65.2 10.5 15 2.5% -4.20 [-11.61, 3.21] Carrizo 2009 -1.87 2.9 24 0.16 2.9 30 15.9% -2.03 [-3.59, -0.47] - Chen 2013 65.9 12.6 28 67 8.7 27 3.8% -1.10 [-6.81, 4.61] - Chiu 2016 62.1		Met	formin		Pla	acebo			Mean Difference	Mean Difference
Wang 2012 61.9 6 32 66.9 5.1 34 10.6% -5.00 [-7.69, -2.31] Wu 2008b 61.9 2.4963 32 67.2 2.4963 32 17.6% -5.30 [-6.52, -4.08] Wu 2012 54.23 7.46 42 58.95 5.79 42 9.9% -4.72 [-7.58, -1.86] Subtotal (95% CI) 106 108 38.1% -5.18 [-6.22, -4.14] Heterogeneity. Tau ² = 0.00; Chi ² = 0.15, df = 2 (P = 0.93); l ² = 0% Test for overall effect: $Z = 9.78$ (P < 0.00001) 1.1.2 Non-FEP Baptista 2007a 64.8 14.6 36 65.4 17.7 36 2.4% -0.60 [-8.10, 6.90] -1.87 2.9 24 0.16 2.9 30 15.9% -2.03 [-3.59, -0.47] Chen 2013 65.9 12.6 28 67 8.7 27 3.8% -1.10 [-6.81, 4.61] Chiu 2016 62.1 10.7 18 71 10.8 18 2.7% -8.90 [-15.92, -1.88] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Heterogeneity. Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); l ² = 0% Test for overall effect: $Z = 5.11$ (P < 0.00001) Total (95% CI) 369 362 100.0% -3.40 [-4.63, -2.16] Heterogeneity. Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: $Z = 5.40$ (P < 0.00001)	Study or Subgroup	Mean [kg]	SD [kg]	Total	Mean [kg]	SD [kg]	Total	Weight	IV, Random, 95% CI [kg]	IV, Random, 95% CI [kg]
Wu 2008b 61.9 2.4963 32 67.2 2.4963 32 17.6% -5.30 [-6.52, -4.08] Wu 2012 54.23 7.46 42 58.95 5.79 42 9.9% -4.72 [-7.58, -1.86] Subtotal (95% CI) 106 108 38.1% -5.18 [-6.22, -4.14] Heterogeneity. Tau ² = 0.00; Chi ² = 0.15, df = 2 (P = 0.93); l ² = 0% Test for overall effect: Z = 9.78 (P < 0.00001) 1.1.2 Non-FEP Baptista 2007a 64.8 14.6 36 65.4 17.7 36 2.4% -0.60 [-8.10, 6.90] Baptista 2008 61 9.5 13 65.2 10.5 15 2.5% -4.20 [-11.61, 3.21] Carrizo 2009 -1.87 2.9 24 0.16 2.9 30 15.9% -2.03 [-3.59, -0.47] Chen 2013 65.9 12.6 28 67 8.7 27 3.8% -1.10 [-6.81, 4.61] Chiu 2016 62.1 10.7 18 71 10.8 18 2.7% -8.90 [-15.92, -1.88] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Jarskog 2013 -3 4.3463 75 -1 4.2248 71 16.7% -2.00 [-3.39, -0.61] Peng 2016 71.8 12.2 11 0 0 0 Not estimable Peng 2016 71.8 12.2 11 0 0 0 Subtotal (95% CI) 263 254 61.9% -2.22 [-3.07, -1.37] Heterogeneity. Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); l ² = 0% Test for overall effect: Z = 5.40 (P < 0.00001) Total (95% CI) 369 362 100.0% -3.40 [-4.63, -2.16] Heterogeneity. Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001)	1.1.1 First episode p	osychosis (FE	EP)							
Wu 2012 54.23 7.46 42 58.95 5.79 42 9.9% $-4.72 [-7.58, -1.86]$ Subtoal (95% CI) 106 108 38.1% $-5.18 [-6.22, -4.14]$ Heterogeneity: Tau ² = 0.00; Chl ² = 0.15, df = 2 (P = 0.93); l ² = 0% Test for overall effect: Z = 9.78 (P < 0.00001) 1.1.2 Non-FEP Baptista 2007a 64.8 14.6 36 65.4 17.7 36 2.4% $-0.60 [-8.10, 6.90]$ Baptista 2007a 64.8 14.6 36 65.4 17.7 36 2.4% $-0.60 [-8.10, 6.90]$ Baptista 2009 -1.87 2.9 24 0.16 2.9 30 15.9% $-2.03 [-3.59, -0.47]$ Chen 2013 65.9 12.6 28 67 8.7 27 3.8% $-1.10 [-6.81, 4.61]$ Chiu 2016 62.1 10.7 18 71 10.8 18 2.7% $-8.90 [-15.92, -1.88]$ de Silva 2015 -1.555 4.3134 34 1 2.6904 32 15.0% $-2.55 [-4.28, -0.83]$ Hu 2013 57 12 24 58 12 25 2.9% $-1.00 [-7.72, 5.72]$ Jarskog 2013 -3 4.3463 75 -1 4.2248 71 16.7% $-2.00 [-3.39, -0.61]$ Peng 2016 71.8 12.2 11 0 0 0 Not estimable Subtoal (95% CI) 263 254 61.9% $-2.22 [-3.07, -1.37]$ Heterogeneity: Tau ² = 0.00; Chl ² = 4.50, df = 7 (P = 0.72); l ² = 0% Test for overall effect: Z = 5.11 (P < 0.00001) Total (95% CI) 369 362 100.0% $-3.40 [-4.63, -2.16]$ Heterogeneity: Tau ² = 1.86; Chl ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001)	Wang 2012	61.9	6	32	66.9	5.1	34	10.6%	-5.00 [-7.69, -2.31]	_ -
Subtotal (95% CI) 106 108 38.1% -5.18 [-6.22, -4.14] Heterogeneity: Tau ² = 0.00; Chi ² = 0.15, df = 2 (P = 0.93); I ² = 0% Test for overall effect: Z = 9.78 (P < 0.00001) 1.1.2 Non-FEP Baptista 2007a 64.8 14.6 36 65.4 17.7 36 2.4% -0.60 [-8.10, 6.90] Baptista 2008 61 9.5 13 65.2 10.5 15 2.5% -4.20 [-11.61, 3.21] Carrizo 2009 -1.87 2.9 24 0.16 2.9 30 15.9% -2.03 [-3.59, -0.47] Chen 2013 65.9 12.6 28 67 8.7 27 3.8% -1.10 [-6.81, 4.61] Chiu 2016 62.1 10.7 18 71 10.8 18 2.7% -8.90 [-15.92, -1.88] de Silva 2015 -1.555 4.3134 34 1 2.6904 32 15.0% -2.55 [-4.28, -0.83] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Jarskog 2013 -3 4.3463 75 -1 4.2248 71 16.7% -2.00 [-3.39, -0.61] Peng 2016 71.8 12.2 11 0 0 0 Not estimable Subtotal (95% CI) 263 254 61.9% -2.22 [-3.07, -1.37] Heterogeneity: Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); I ² = 0% Test for overall effect: Z = 5.11 (P < 0.00001) Total (95% CI) 369 362 100.0% -3.40 [-4.63, -2.16] Heterogeneity: Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); I ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001)	Wu 2008b	61.9	2.4963	32	67.2	2.4963	32	17.6%	-5.30 [-6.52, -4.08]	
Heterogeneity. Tau ² = 0.00; Chi ² = 0.15, df = 2 (P = 0.93); I ² = 0% Test for overall effect: Z = 9.78 (P < 0.00001) 1.1.2 Non-FEP Baptista 2007a 64.8 14.6 36 65.4 17.7 36 2.4% -0.60 [-8.10, 6.90] Baptista 2008 61 9.5 13 65.2 10.5 15 2.5% -4.20 [-11.61, 3.21] Carrizo 2009 -1.87 2.9 24 0.16 2.9 30 15.9% -2.03 [-3.59, -0.47] Chen 2013 65.9 12.6 28 67 8.7 27 3.8% -1.10 [-6.81, 4.61] Chiu 2016 62.1 10.7 18 71 10.8 18 2.7% -8.90 [-15.92, -1.88] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Jarskog 2013 -3 4.3463 75 -1 4.2248 71 16.7% -2.00 [-3.39, -0.61] Peng 2016 71.8 12.2 11 0 0 0 Not estimable Subtotal (95% CI) 263 254 61.9% -2.22 [-3.07, -1.37] Heterogeneity. Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); I ² = 0% Test for overall effect: Z = 5.40 (P < 0.00001) Total (95% CI) 369 362 100.0% -3.40 [-4.63, -2.16] Heterogeneity. Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); I ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001)	Wu 2012	54.23	7.46	42	58.95	5.79	42		-4.72 [-7.58, -1.86]	
Test for overall effect: $Z = 9.78$ (P < 0.00001) 1.1.2 Non-FEP Baptista 2007a 64.8 14.6 36 65.4 17.7 36 2.4% -0.60 [-8.10, 6.90] Baptista 2008 61 9.5 13 65.2 10.5 15 2.5% -4.20 [-11.61, 3.21] Carrizo 2009 -1.87 2.9 24 0.16 2.9 30 15.9% -2.03 [-3.59, -0.47] Chen 2013 65.9 12.6 28 67 8.7 27 3.8% -1.10 [-6.81, 4.61] Chiu 2016 62.1 10.7 18 71 10.8 18 2.7% -8.90 [-15.92, -1.88] de Silva 2015 -1.555 4.3134 34 1 2.6904 32 15.0% -2.55 [-4.28, -0.83] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Jarskog 2013 -3 4.3463 75 -1 4.2248 71 16.7% -2.00 [-3.39, -0.61] Peng 2016 71.8 12.2 11 0 0 0 0 Not estimable Subtotal (95% CI) 263 254 61.9% -2.22 [-3.07, -1.37] Heterogeneity. Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); l ² = 0% Test for overall effect: Z = 5.11 (P < 0.00001) Total (95% CI) 369 362 100.0% -3.40 [-4.63, -2.16] Heterogeneity. Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001)	Subtotal (95% CI)			106			108	38.1%	-5.18 [-6.22, -4.14]	◆
1.1.2 Non-FEP Baptista 2007a 64.8 14.6 36 65.4 17.7 36 2.4% -0.60 [-8.10, 6.90] Baptista 2008 61 9.5 13 65.2 10.5 15 2.5% -4.20 [-11.61, 3.21] Carrizo 2009 -1.87 2.9 24 0.16 2.9 30 15.9% -2.03 [-3.59, -0.47] Chen 2013 65.9 12.6 28 67 8.7 27 3.8% -1.10 [-6.81, 4.61] Chiu 2016 62.1 10.7 18 71 10.8 18 2.7% -8.90 [-15.92, -1.88] de Silva 2015 -1.555 4.3134 34 1 2.6904 32 15.0% -2.55 [-4.28, -0.83] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Jarskog 2013 -3 4.3463 75 -1 4.2248 71 16.7% -2.00 [-3.39, -0.61] Peng 2016 71.8 12.2 11 0 0 0 Subtotal (95% CI) 263 254 61.9% -2.22 [-3.07, -1.37] Heterogeneity. Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); l ² = 0% Test for overall effect: Z = 5.11 (P < 0.00001) Total (95% CI) 369 362 100.0% -3.40 [-4.63, -2.16] Heterogeneity. Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001)	Heterogeneity: Tau ² =	= 0.00; Chi ^z =	= 0.15, dt	f = 2 (P	$= 0.93); ^2$	= 0%				
Baptista 2007a 64.8 14.6 36 65.4 17.7 36 2.4% -0.60 [-8.10, 6.90] Baptista 2008 61 9.5 13 65.2 10.5 15 2.5% -4.20 [-11.61, 3.21] Carrizo 2009 -1.87 2.9 24 0.16 2.9 30 15.9% -2.03 [-3.59, -0.47] Chen 2013 65.9 12.6 28 67 8.7 27 3.8% -1.10 [-6.81, 4.61] Chiu 2016 62.1 10.7 18 71 10.8 18 2.7% -8.90 [-15.92, -1.88] de Silva 2015 -1.555 4.3134 34 1 2.6904 32 15.0% -2.55 [-4.28, -0.83] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Jarskog 2013 -3 4.3463 75 -1 4.2248 71 16.7% -2.00 [-3.39, -0.61] Hu 2016 71.8 12.2 11 0 0 0 Not estimable Subtotal (95% CI) 263 254 61.9% -2.22 [-3.07, -1.37] Heterogeneity. Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); I ² = 0% Test for overall effect: Z = 5.11 (P < 0.00001) Heterogeneity. Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); I ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001)	Test for overall effect:	:Z = 9.78 (P	< 0.000	01)						
Baptista 2007a 64.8 14.6 36 65.4 17.7 36 2.4% -0.60 [-8.10, 6.90] Baptista 2008 61 9.5 13 65.2 10.5 15 2.5% -4.20 [-11.61, 3.21] Carrizo 2009 -1.87 2.9 24 0.16 2.9 30 15.9% -2.03 [-3.59, -0.47] Chen 2013 65.9 12.6 28 67 8.7 27 3.8% -1.10 [-6.81, 4.61] Chiu 2016 62.1 10.7 18 71 10.8 18 2.7% -8.90 [-15.92, -1.88] de Silva 2015 -1.555 4.3134 34 1 2.6904 32 15.0% -2.55 [-4.28, -0.83] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Jarskog 2013 -3 4.3463 75 -1 4.2248 71 16.7% -2.00 [-3.39, -0.61] Hu 2016 71.8 12.2 11 0 0 0 Not estimable Subtotal (95% CI) 263 254 61.9% -2.22 [-3.07, -1.37] Heterogeneity. Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); I ² = 0% Test for overall effect: Z = 5.11 (P < 0.00001) Heterogeneity. Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); I ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001)										
Baptista 2008 61 9.5 13 65.2 10.5 15 2.5% -4.20 [-11.61, 3.21] Carrizo 2009 -1.87 2.9 24 0.16 2.9 30 15.9% -2.03 [-3.59, -0.47] Chen 2013 65.9 12.6 28 67 8.7 27 3.8% -1.10 [-6.81, 4.61] Chiu 2016 62.1 10.7 18 71 10.8 18 2.7% -8.90 [-15.92, -1.88] de Silva 2015 -1.555 4.3134 34 1 2.6904 32 15.0% -2.55 [-4.28, -0.83] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Jarskog 2013 -3 4.3463 75 -1 4.2248 71 16.7% -2.00 [-3.39, -0.61] Peng 2016 71.8 12.2 11 0 0 0 Not estimable Peng 2016 71.8 12.2 11 0 0 0 Subtotal (95% CI) 263 254 61.9% -2.22 [-3.07, -1.37] Heterogeneity: Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); l ² = 0% Test for overall effect: Z = 5.11 (P < 0.00001) Total (95% CI) 369 362 100.0% -3.40 [-4.63, -2.16] Heterogeneity: Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001)										
Carrizo 2009 -1.87 2.9 24 0.16 2.9 30 15.9% -2.03 [-3.59, -0.47] Chen 2013 65.9 12.6 28 67 8.7 27 3.8% -1.10 [-6.81, 4.61] Chiu 2016 62.1 10.7 18 71 10.8 18 2.7% -8.90 [-15.92, -1.88] de Silva 2015 -1.555 4.3134 34 1 2.6904 32 15.0% -2.55 [-4.28, -0.83] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Jarskog 2013 -3 4.3463 75 -1 4.2248 71 16.7% -2.00 [-3.39, -0.61] Peng 2016 71.8 12.2 11 0 0 0 Subtotal (95% CI) 263 254 61.9% -2.22 [-3.07, -1.37] Heterogeneity: Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); l ² = 0% Test for overall effect: Z = 5.11 (P < 0.00001) Heterogeneity: Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001)	•									
Chen 2013 65.9 12.6 28 67 8.7 27 3.8% $-1.10[-6.81, 4.61]$ Chiu 2016 62.1 10.7 18 71 10.8 18 2.7% $-8.90[-15.92, -1.88]$ de Silva 2015 -1.555 4.3134 34 1 2.6904 32 15.0% $-2.55[-4.28, -0.83]$ Hu 2013 57 12 24 58 12 25 2.9% $-1.00[-7.72, 5.72]$ Jarskog 2013 -3 4.3463 75 -1 4.2248 71 16.7% $-2.00[-3.39, -0.61]$ Peng 2016 71.8 12.2 11 0 0 0 Subtotal (95% CI) 263 254 61.9% $-2.22[-3.07, -1.37]$ Heterogeneity: Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); l ² = 0% Test for overall effect: Z = 5.11 (P < 0.00001) Heterogeneity. Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001)	•								• • •	
Chiu 2016 62.1 10.7 18 71 10.8 18 2.7% -8.90 [-15.92, -1.88] de Silva 2015 -1.555 4.3134 34 1 2.6904 32 15.0% -2.55 [-4.28, -0.83] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Jarskog 2013 -3 4.3463 75 -1 4.2248 71 16.7% -2.00 [-3.39, -0.61] Peng 2016 71.8 12.2 11 0 0 0 Subtotal (95% Cl) 263 254 61.9% -2.22 [-3.07, -1.37] Heterogeneity: Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); l ² = 0% Test for overall effect: Z = 5.11 (P < 0.00001) Heterogeneity: Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001)	Carrizo 2009	-1.87	2.9	24	0.16	2.9	30	15.9%		
de Silva 2015 -1.555 4.3134 34 1 2.6904 32 15.0% -2.55 [-4.28, -0.83] Hu 2013 57 12 24 58 12 25 2.9% -1.00 [-7.72, 5.72] Jarskog 2013 -3 4.3463 75 -1 4.2248 71 16.7% -2.00 [-3.39, -0.61] Peng 2016 71.8 12.2 11 0 0 0 Subtotal (95% CI) 263 254 61.9% -2.22 [-3.07, -1.37] Heterogeneity: Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); l ² = 0% Test for overall effect: Z = 5.11 (P < 0.00001) Total (95% CI) 369 362 100.0% -3.40 [-4.63, -2.16] Heterogeneity: Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001)	Chen 2013	65.9	12.6	28	67	8.7	27	3.8%	-1.10 [-6.81, 4.61]	
Hu 2013 57 12 24 58 12 25 2.9% $-1.00 [-7.72, 5.72]$ Jarskog 2013 -3 4.3463 75 -1 4.2248 71 16.7% $-2.00 [-3.39, -0.61]$ Peng 2016 71.8 12.2 11 0 0 0 Subtotal (95% CI) 263 254 61.9% $-2.22 [-3.07, -1.37]$ Heterogeneity. Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); l ² = 0% Test for overall effect: Z = 5.11 (P < 0.00001) Heterogeneity. Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001) Heterogeneity. Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001)	Chiu 2016			18	71	10.8	18	2.7%	-8.90 [-15.92, -1.88]	←
Jarskog 2013 -3 4.3463 75 -1 4.2248 71 16.7% -2.00 [-3.39, -0.61] Peng 2016 71.8 12.2 11 0 0 0 Subtotal (95% CI) 263 254 61.9% -2.22 [-3.07, -1.37] Heterogeneity: Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); l ² = 0% Test for overall effect: Z = 5.11 (P < 0.00001) Total (95% CI) 369 362 100.0% -3.40 [-4.63, -2.16] Heterogeneity: Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001) Test for overall effect: Z = 5.40 (P < 0.00001)	de Silva 2015		4.3134	34	_	2.6904	32	15.0%	-2.55 [-4.28, -0.83]	
Peng 2016 71.8 12.2 11 0 0 Not estimable Subtotal (95% CI) 263 254 61.9% -2.22 [-3.07, -1.37] \leftarrow Heterogeneity: Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); l ² = 0% 369 362 100.0% -3.40 [-4.63, -2.16] \leftarrow Total (95% CI) 369 362 100.0% -3.40 [-4.63, -2.16] \leftarrow Heterogeneity: Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001) \leftarrow -10 -5 0 5 10 Fast for overall effect: Z = 5.40 (P < 0.00001) P	Hu 2013	57	12	24	58	12	25	2.9%	-1.00 [-7.72, 5.72]	
Subtotal (95% Cl) 263 254 61.9% -2.22 [-3.07, -1.37] Heterogeneity: Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); l ² = 0% Test for overall effect: Z = 5.11 (P < 0.00001)	Jarskog 2013	-3	4.3463	75	-1	4.2248	71	16.7%	-2.00 [-3.39, -0.61]	
Heterogeneity: Tau ² = 0.00; Chi ² = 4.50, df = 7 (P = 0.72); l ² = 0% Test for overall effect: Z = 5.11 (P < 0.00001) Total (95% CI) Heterogeneity: Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001) Test for overall effect: Z = 5.40 (P < 0.00001)	Peng 2016	71.8	12.2		0	0				
Test for overall effect: Z = 5.11 (P < 0.00001) Total (95% CI) 369 362 100.0% -3.40 [-4.63, -2.16] \clubsuit Heterogeneity: Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); I ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001) Test for overall effect: Z = 5.40 (P < 0.00001)	Subtotal (95% CI)			263			254	61.9%	-2.22 [-3.07, -1.37]	◆
Total (95% CI) 369 362 100.0% -3.40 [-4.63, -2.16] Heterogeneity: Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% -10 -5 -5 -10 Test for overall effect: Z = 5.40 (P < 0.00001)	Heterogeneity. Tau ² =	= 0.00; Chi ^z =	= 4.50, di	f = 7 (P	$= 0.72$); 1^2	= 0%				
Heterogeneity: Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001) Eavours placeb	Test for overall effect:	: Z = 5.11 (P	< 0.000	D1)						
Heterogeneity: Tau ² = 1.86; Chi ² = 23.29, df = 10 (P = 0.010); l ² = 57% Test for overall effect: Z = 5.40 (P < 0.00001) Eavours metformin Eavours placeb	Total (95% CI)			369			362	100.0%	-3.40 [-4.63, -2.16]	•
Test for overall effect: Z = 5.40 (P < 0.00001)		- 1 86' Chi ² -	- 72 79		/P = 0.010): 1 ² - 57		200.0/0	5110 [1105, 2120]	▼
FAVOURS MEDIOLIMIN FAVOURS DIACED					, () = 0.010	, i = 57.	/0			10 2 0 2 1
		,			1 /8 < 0.000	$11 1^2 - 0$	N 68			Favours metformin Favours placeb

GLP-1 RAs: The hot new thing


De Giorgi et al., Nature Mental Health 2025

GLP-1 RAs for Treatment of Weight Gain in SMI

		LP-1RA			lacebo			Mean Difference	Mean Diff	
Study or Subgroup	Mean [kg]	SD [kg]	Total	Mean [kg]	SD [kg]	Total	Weight	IV, Random, 95% CI [kg]	IV, Random, 9	5% CI [kg]
3.1.1 Liraglutide										
Larsen 2017	-4.7	3.4278	47	0.5	4.9497	50	46.2%	-5.20 [-6.89 , -3.51]		
Subtotal (95% CI)			47			50	46.2%	-5.20 [-6.89 , -3.51]	▲	
Heterogeneity: Not ap	plicable								•	
Test for overall effect:	Z = 6.04 (P <	0.00001)								
3.1.2 Exenatide										
Delbello 2018	-1.1	6.2	22	5.9	10.3	29	19.4%	-7.00 [-11.56 , -2.44]		
Ishoy 2017	116	16.9	20	109.1	19	20	4.4%	6.90 [-4.24 , 18.04]	4	
Siskind 2017	-5.29	4.92	14	-1.12	3.41	14	30.0%	-4.17 [-7.31 , -1.03]		
Subtotal (95% CI)			56			63	53.8%	-3.65 [-8.56 , 1.25]	•	
Heterogeneity: Tau ² =	10.83; Chi ² =	5.22, df =	2 (P = 0.	07); l² = 62%					•	
Test for overall effect:	Z = 1.46 (P =	0.14)								
Total (95% CI)			103			113	100.0%	-4.70 [-7.15 , -2.26]		
Heterogeneity: Tau ² =	2.63; Chi ² = 5	5.44, df = 3	8 (P = 0.1	4); I² = 45%					•	
Test for overall effect:	Z = 3.77 (P =	0.0002)							-20 -10 0	10 20
Test for subgroup diffe	erences: Chi2	= 0.34, df	= 1 (P = 0	0.56), l² = 0%				Fa	avours GLP-1RA	Favours Place

Stogios and Agarwal et al., under review

Semaglutide: Early evidence of efficacy in metformin non responders

Prasad et al., Therapeutic Advances in Psychopharmacology 2023

Semaglutide for metformin-non responders study

16-week run-in phase Lifestyle changes and open-label metformin (Metabolic clinic ICP)

24-week continuation phase for responders (~20%) Lifestyle changes and open-label metformin (Metabolic clinic ICP)

24-week DB-RCT for non responders (~80%)

Randomized 1:1 to add-on semaglutide or placebo

Baseline Assessments
(only RCT participants)
Anthropometry
Clinical scales
Fasting blood work
OGTT
MRI
MCCB

End point Assessments (only RCT participants) Anthropometry Clinical scales Fasting blood work OGTT MRI MCCB

ICP: Integrated Clinical Pathway; BCATS: Brief Cognitive Assessment Tool for Schizophrenia, DB-RCT: Double blind randomized control trial; OGTT: Oral Glucose Tolerance Test, MCCB: MATRICS Consensus Cognitive Battery

PI: Hahn and Agarwal

Preliminary Data from the Metabolic Clinic at CAMH

Intervention	NNT ≥5% Weight Loss	NNT ≥7% Weight Loss	
Lifestyle Only	3	4	
Add-on Metformin	m	4	
Add-on Topiramate	3	5	
Add-on Semaglutide	2	2	
Switch to add-on Metformin	4	7	
Switch to add-on Topiramate	3	3	
Switch to add-on Semaglutide	4	7	
Metformin + Topiramate	5	5	
Metformin + Semaglutide	2	3	
Other	3	3	
All Interventions (Overall Clinic Effect)	3	4	

Stogios and Prasad et al., in preparation

GLP-1 RAs: Early evidence of improving cognition/brain morphology

> Eur Neuropsychopharmacol. 2017 Nov;27(11):1153-1162. doi: 10.1016/j.euroneuro.2017.08.433. Epub 2017 Sep 1.

Treatment with a GLP-1R agonist over four weeks promotes weight loss-moderated changes in frontalstriatal brain structures in individuals with mood disorders

Rodrigo B Mansur ¹, Andre Zugman ², Juhie Ahmed ³, Danielle S Cha ³, Mehala Subramaniapillai ³, Yena Lee ³, Julie Lovshin ⁴, Jung G Lee ⁵, Jae-Hon Lee ⁶, Vladislav Drobinin ⁷, Jason Newport ⁷, Elisa Brietzke ⁸, Eva Z Reininghaus ⁹, Kang Sim ¹⁰, Maj Vinberg ¹¹, Natalie Rasgon ¹², Tomas Hajek ⁷, Roger S McIntyre ³

Randomized Controlled Trial > Acta Psychiatr Scand. 2017 Jul;136(1):52-62.

doi: 10.1111/acps.12711. Epub 2017 Mar 5.

No cognitive-enhancing effect of GLP-1 receptor agonism in antipsychotic-treated, obese patients with schizophrenia

P L Ishøy ¹ ², B Fagerlund ¹ ², B V Broberg ¹, N Bak ¹, F K Knop ² ³ ⁴, B Y Glenthøj ¹ ², B H Ebdrup ¹

GLP-1 RAs: Risk of worsening mental health

Expert Opin Drug Saf. 2024 Jan;23(1):47-55. doi: 10.1080/14740338.2023.2295397.
 Epub 2023 Dec 19.

The association between glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and suicidality: reports to the Food and Drug Administration Adverse Event Reporting System (FAERS)

Roger S McIntyre ¹ ² ³, Rodrigo B Mansur ¹ ⁴, Joshua D Rosenblat ¹ ⁴, Angela T H Kwan ³ ⁵

Affiliations + expand

PMID: 38087976 DOI: 10.1080/14740338.2023.2295397

> Sci Rep. 2024 Oct 18;14(1):24433. doi: 10.1038/s41598-024-75965-2.

The risk of depression, anxiety, and suicidal behavior in patients with obesity on glucagon like peptide-1 receptor agonist therapy

Edy Kornelius ¹ ² ³, Jing-Yang Huang ⁴, Shih-Chang Lo ², Chien-Ning Huang ¹ ² ⁵, Yi-Sun Yang ⁶ ⁷ ⁸

Affiliations + expand PMID: 39424950 PMCID: PMC11489776 DOI: 10.1038/s41598-024-75965-2

GLP-1 RAs: Risk of worsening mental health

Population	Semaglutide group	Non-GLP1R agonist anti-obesity medication group		HR (95% CI)
Overall (<i>n</i> = 52,783 per group)	0.11% (60)	0.43% (226)		0.27 (0.20–0.36)
Females (<i>n</i> = 39,004 per group)	0.11% (43)	0.35% (136)		0.32 (0.23–0.45)
Males (<i>n</i> = 13,191 per group)	0.13% (17)	0.64% (85)		0.20 (0.12–0.34)
Age ≤45 years (<i>n</i> = 19,650 per group)	0.17% (33)	0.51% (100)		0.34 (0.23–0.50)
Age 46–64 years (<i>n</i> = 24,508 per group)	0.09% (22)	0.34% (84)	-■	0.26 (0.16–0.42)
Age ≥65 years (<i>n</i> = 8,106 per group)	0.12% (10)	0.31% (25)		0.28 (0.12–0.64)
Black (<i>n</i> = 8,288 per group)	0.12% (10)	0.42% (35)		0.20 (0.09–0.45)
White (<i>n</i> = 37,133 per group)	0.14% (50)	0.39% (145)	-■-	0.35 (0.25–0.48)
Hispanic ethnicity (<i>n</i> = 3,666 per group)	0.27% (10)	0.49% (18)		0.40 (0.17–0.95)
			0.10 0.20 0.40 0.80 2.0 HR	0 4.0 8.00

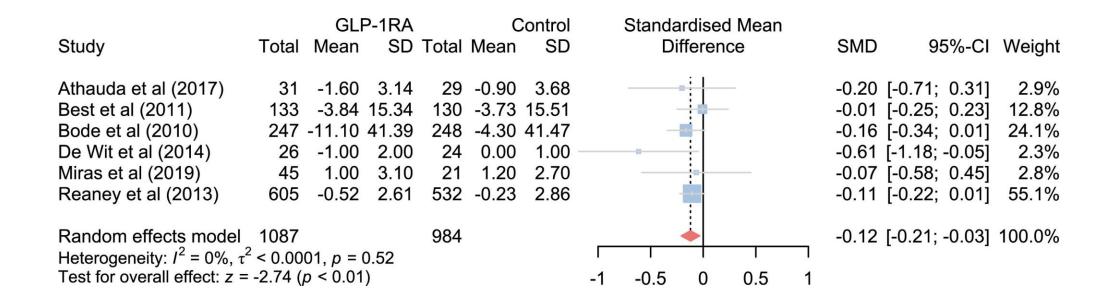

GLP-1 RAs: Improvement in mental health-related QoL

Figure 4. Forest Plot of the Effect of Glucagon-Like Peptide 1 Receptor Agonists (GLP1-RAs) vs Placebo on Mental Health-Related Quality of Life (QOL)

clinically relevant dose of GLP1-RA vs placebo)	SMD (95% CI)	Favors placebo	Favors GLP1-RA
iabetes studies (8 studies, total No. = 4979)			
Miras et al, ⁵¹ 2019 (liraglutide, 1.8 mg/d; SF-36 social role functioning)	-0.21 (-1.27 to 0.85) –	· · · ·	
Miras et al, ⁵¹ 2019 (liraglutide, 1.8 mg/d; SF-36 emotional well-being)	0.03 (-1.03 to 1.09) -		
Miras et al, ⁵¹ 2019 (liraglutide, 1.8 mg/d; SF-36 vitality)	0.01 (-1.05 to 1.07) -		
Miras et al, ⁵¹ 2019 (liraglutide, 1.8 mg/d; SF-36 emotional role functioning)	0.16 (-0.82 to 1.14)		
Davies et al, ⁵² 2017 (semaglutide, 40 mg/d, oral [2-wk escalation]; SF-36 overall mental score)	-0.17 (-0.65 to 0.30)		
Davies et al, ⁵² 2017 (semaglutide, 40 mg/d, oral [8-wk escalation]; SF-36 overall mental score)	0.00 (-0.46 to 0.46)		
Davies et al, ⁵² 2017 (semaglutide, 40 mg/d, oral [standard 4-wk escalation]; SF-36 overall mental score)	-0.08 (-0.54 to 0.39)		
Aroda et al, ⁵³ 2019 (semaglutide, 14 mg/d, oral; SF-36 version 2 mental component summary)	0.18 (-0.04 to 0.40)	-	
Mosenzon et al, ²⁹ 2019 (semaglutide, 14 mg/d, oral; SF-36 version 2 mental component summary)	0.06 (-0.16 to 0.28)		•
Zinman et al, ³¹ 2019 (PIONEER 8) (semaglutide, 14 mg/d, oral; SF-36 mental component summary)	0.33 (0.12 to 0.54)		_
Yamada et al, ⁵⁴ 2020 (liraglutide, 0.9 mg/d; SF-36 version 2 mental component summary)	0.37 (-0.20 to 0.94)		
Yamada et al, ⁵⁴ 2020 (semaglutide, 14 mg/d, oral; SF-36 version 2 mental component summary)	0.14 (-0.43 to 0.70)		-
Jódar et al, ⁵⁵ 2019 (semaglutide, 0.5 mg and 1.0 mg/wk [pooled]; SF-36 version 2 mental component summary)	0.06 (-0.01 to 0.13)		-
Zinman et al, ⁵⁶ 2019 (SUSTAIN 9) (semaglutide, 1.0 mg/wk; SF-36 version 2 mental component summary)	0.17 (-0.09 to 0.42)	-	
RE model for diabetes studies: $I^2 = 13\%$; $P = .01$	0.11 (0.03 to 0.19)		\diamond
besity studies (9 studies, total No. = 5051)			
Armstrong et al, ⁵⁷ 2016 (liraglutide, 1.8 mg/d; SF-36 version 2 mental component)	0.05 (-0.54 to 0.63)		
Lau et al, ⁴⁹ 2021 (liraglutide, 3.0 mg/d; SF-36 version 2 mental component summary)	0.00 (-0.28 to 0.28)		
Newsome et al, ⁵⁸ 2021 (semaglutide, 0.4 mg/d; SF-36 mental component summary)	0.17 (-0.15 to 0.49)		
Wadden et al, ⁴³ 2021 (semaglutide, 2.4 mg/wk; SF-36 version 2 mental component summary)	0.31 (0.14 to 0.48)		_
Rubino et al, ⁵⁹ 2021 (semaglutide, 2.4 mg/wk; SF-36 version 2 mental component summary)	0.47 (0.33 to 0.62)		
O'Neil et al, ⁶⁰ 2018 (liraglutide, 3.0 mg/d; SF-36 mental component summary)	-0.03 (-0.70 to 0.63)		
O'Neil et al, ⁶⁰ 2018 (semaglutide, 0.4 mg/d [fast escalation]; SF-36 mental component summary)	0.03 (-0.66 to 0.73)		
O'Neil et al, ⁶⁰ 2018 (semaglutide, 0.4 mg/d; SF-36 mental component summary)	0.25 (-0.39 to 0.90)		
Wadden et al, ⁶¹ 2020 (liraglutide + IBT, 3.0 mg/d; SF-36 overall mental)	0.03 (-0.20 to 0.26)		
Kolotkin et al, ⁶² 2016 (liraglutide, 3.0 mg/d; SF-36 version 2 mental component summary)	0.13 (0.04 to 0.21)		
Blackman et al, ⁴⁶ 2016 (liraglutide, 3.0 mg/d; SF-36 overall mental)	0.06 (-0.15 to 0.27)		
RE model for obesity studies: $l^2 = 61\%$; $P = .005$	0.17 (0.05 to 0.29)		\diamond
RE model for all studies: <i>I</i> ² = 49%; <i>P</i> < .001	0.15 (0.07 to 0.22)		

A total of 17 studies were included (GLP1-RA, n = 5818, vs placebo, n = 4212). The summary effect size indicates that GLP1-RAs are associated with improved mental health-related QOL relative to placebo, with Hedges g of 0.15 (*P* < .001). RE indicates random effects; SMD, standardized mean difference.

GLP-1 RAs: Early evidence of improving symptoms of depression

Chen et al., American Journal of Geriatric Psychiatry 2024

GLP-1 RAs: Opportunities and challenges

- Weight effects
- May improve CV health
- May not worsen mental health
- May have cognitive benefits
- May improve quality of life

- Very little data in SMI
- Gastric effects
- Interaction with ECTs
- Accessibility
- Length of use, weight regain

Email: Mahavir.Agarwal@camh.ca

Margaret Hahn Gary Remington

Nicolette Stogios Kateryna Maksyutynska Femin Prasad Riddhita De

