

A step closer to detecting drug-induced liver injury (DILI) through metabolomics: new logistic regression model as a promising diagnostic tool

Daniel E. Di Zeo Sánchez¹, Mercedes Robles-Diaz^{1,2}, Ibon Martínez-Arranz³, Cristina Alonso¹, Miren García-Cortes^{1,2}, José Pinazo-Bandera¹, Enrique del Campo-Herrera¹, Alejandro Cueto-Sánchez¹, Marina Villanueva-Paz¹, Ismael Álvarez-Álvarez¹, Andrade^{1,2}, Marina Villanueva-Paz¹, Ismael Álvarez-Álvarez¹, Andrade^{1,2}, Marina Villanueva-Paz¹, Ismael Álvarez¹, Andrade^{1,2}, Marina Villanueva-Paz¹, Ismael Álvarez¹, Andrade^{1,2}, An Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universidad de Málaga, Spain; (2) Centro de investigación en reden el área temática de enfermedades hepáticas y digestivas (CIBERehd), Madrid, Spain; (3) OWL Metabolomics, Derio, Bizkaia, Spain.

"The analysis of patient serum metabolomics has allowed us to develop a predictive model capable of **detect DILI with 84% accuracy**, through a promising equation **easily transferable to clinical practice**"

Introduction and objectives

Drug-induced liver injury (DILI) is a public health problem and is a leading cause of acute live failure and withdrawal of pharmacological products, even during drug development¹.

Results

Out of 186 initial different metabolic variables, the logistic regression model was generated incorporating only 5 different metabolites: ALT, leucine, two

Problem: Diagnosis of DILI remains a critical challenge during clinical development for the pharmaceutical industry and clinical practice. To date, there is no test or specific biomarker capable of concluding an accurate diagnosis of this disease². Our aim was to identify metabolic variables to design an optimal statistical model that can help clinicians distinguish DILI from other types of liver injury.

polyunsaturated fatty acids (22:4n-6 and 20:3n-9) and one lysophosphatidylcholine (PC(0-22:1/0:0)) (Table 2). The AUC of the training cohort and the validation cohort was 0.84 in both cases (Figure 1). This algorithm was developed for implementation in a logistic regression probability equation in which Bi are the coefficients of the model variables and the explanatory variables (Xi) correspond to the concentrations of the metabolites.

Table **2.** Coefficients of the chosen for the metabolites development of the logistic regression model.

Variable	Coef (B _i)	SE
β0	2,472	1,841
PC(O-22:1/0:0)	-1,273	0,808
ALT (U/L)	0,002	0,001
22:4n-6	0,732	0,928
20:3n-9	0,504	0,711
Leucine	-7,253	3,087

Metabolite

concentration

Methods

The serum metabolomic profile (UHPLC-MS) and clinical parameters of 26 DILI cases -mostly due to anti-infective drugsand 34 patients with other forms of acute liver injury (ALI) -mostly viral hepatitis- were used to design and optimize a predictive logistic regression model. The number of variables of the model was optimized using genetic algorithms, selecting only those with the highest accuracy in cross-validation.

Figure 1. ROC curves. Models were built in the training cohort (60% samples) and evaluated in the validation cohort (40% samples).

Example:

Aye, mean ± SD	JU 1 17	40 1 20
% Sex (male/female)	57 / 43	53 / 47
BMI	24,6 ± 3,7	23,9 ± 4,1
ALT (UI/L)	424 ± 466	1134 ± 1241
AST (UI/L)	264 ± 368	700 ± 806
γ-GT (UI/L)	551 ± 1270	300 ± 253
TB (mg/dL)	11 ± 13	11 ± 8

References

- Andrade RJ, et al.,. Drug-induced liver injury. Nat Rev Dis Primers. 2019 Aug 22;5(1):58.
- Aithal GP, et al., Case definition and phenotype standardization in drug-induced liver injury. Clin Pharmacol Ther. 2011 Jun;89(6):806-15.

Low probability ALI

Conclusions

Metabolomic profiling can help distinguish drug-induced liver injury from other causes of liver injury. Using serum concentrations for 5 metabolites into logistic regression equation that can be easily translated to clinical, it was possible to predict the probability of a case being DILI or ALI with an AUC of 0.84. However, it is necessary to refine the model and to validate these results in a larger cohort of patients to test the robustness of the algorithm and to analyse its performance.

Funding: CIBERehd-ISCiii, FEDER PI18/00901, PI19/00883, PI21/01248, UMA18-FEDERJA-193, PY18-3364, PEMP-0127-2020, I-PFIS (IFI21-00034).

UNIÓN EUROPEA Fondo Europeo de Desarrollo Regional

JNIVERSIDAD DE MÁLAG